Math 245 Spring 2022 Lecture 40

$$
f(x)=\frac{x-4}{x-2}
$$

Rational function $\frac{\text { Polynomial }}{\text { Polynomial }}$

1) Domain: $x-2 \neq 0 \quad x \neq 2 \Rightarrow(-\infty, 2) \cup(2, \infty)$
2) Vertical Asymptote $x=2$
3) Y-Int $\rightarrow x=0 \rightarrow f(0)=\frac{0-4}{0-2}=\frac{-4}{-2}=2 \rightarrow Y$-Int $(0,2)$
4) x-Int $\rightarrow y=0 \rightarrow f(x)=0 \rightarrow x-4=0 \quad x=4 \rightarrow x$-Int $(4,0)$
5) Horizontal Asymptote:
when deg. of numerator $=$ deg. of denominator

$$
\text { H.A. } y=\frac{\text { Lead. coff. of Num. }}{\text { Lead. Coff. of deno. }} \quad y=\frac{7}{1}=1
$$

$$
\begin{aligned}
& f(x)=\frac{x+4}{x^{2}-4} \quad f(x)=\frac{x+4}{(x+2)(x-2)} \\
& \text { 1) Domain } \rightarrow \text { Den. } \neq 0 \quad x^{2}-4 \neq 0 \quad(x+2)(x-2) \neq 0 \\
& x+2 \neq 0 \rightarrow x \neq-2 \\
& x-2 \neq 0 \rightarrow x \neq 2 \\
& \rightarrow(-\infty,-2) \cup(-2,2) \cup(2, \infty)
\end{aligned}
$$

2) Vertical Asymptote $\Rightarrow x=-2, x=2$
3) Y-Int $\rightarrow x=0 \rightarrow f(0)=\frac{0+4}{0^{2}-4}=\frac{4}{-4}=-1$

$$
\longrightarrow(0,-1)
$$

4)

$$
\begin{aligned}
& x \text { - Int } \rightarrow y=0 \rightarrow S(x)=0 \rightarrow \begin{array}{l}
\text { NuT } 1=0 \\
\\
\\
\\
\longrightarrow(-4=0 \quad x=-4
\end{array}
\end{aligned}
$$

5) Horizontal Asymptote:
when deg. of Numerator < deg. of denominator HA. $y=0$

If $x=3$

$$
y=\frac{3+4}{3^{2}-4}=\frac{7}{5}=+
$$

If $x=1$

$$
\begin{aligned}
& y=\frac{1+4}{1^{2}-4}=\frac{5}{-3}=-4=0 \\
& \text { If } x=-1 \\
& y=\frac{-1+4}{(-1)^{2}-4}=\frac{3}{-3}=-
\end{aligned}
$$

$$
\begin{aligned}
& x=100 \\
& y=\frac{100+4}{100^{2}-4} \approx 0>0 \text { Above } \\
& x \text {-axis }
\end{aligned}
$$

$$
\begin{cases}x=-100 \\ y=\frac{-100+4}{(-100)^{2}-4} \approx 0<0 \quad \text { below } \\ x \text {-axis }\end{cases}
$$

$$
f(x)=\frac{x^{2}-4}{x}
$$

Domain: Dent $\neq 0 \rightarrow x \neq 0 \rightarrow(-\infty, 0) \cup(0, \infty)$
\square
Vertical Asymptote $\rightarrow x=0$
Y-Int $\rightarrow X=0$ but 0 is not in the domain

$$
\begin{aligned}
& \begin{array}{l}
L \text { None } \\
x \text { Int }
\end{array} \rightarrow \begin{array}{l}
\rightarrow y=0 \rightarrow f(x)=0 \rightarrow \text { Nom. }=0 \rightarrow x^{2}-4=0 \\
\\
\\
x= \pm 2
\end{array}
\end{aligned}
$$

when deg. of numerator $>$ deg. of denominator
by OnlY $1 \Rightarrow$ Slant Asymptote
To find it \Rightarrow do long division

$$
\begin{aligned}
& x=3 \\
& y=\frac{3^{2}-4}{3}=\frac{5}{3}>0 \\
& x=1 \\
& y=\frac{1^{2}-4}{1}<3
\end{aligned}
$$

